半導(dǎo)體SiC是由硅(Si)和碳(C)按1:1的化學(xué)計(jì)量比組成的晶體,屬于化合物半導(dǎo)體的一種。硅和碳都是IV族元素,每個(gè)原子都有4個(gè)共價(jià)鍵,硅和碳以四面體交替配位結(jié)合形成晶體。
一對(duì)Si原子和C原子組成基本結(jié)構(gòu)單元,這些結(jié)構(gòu)單元以最緊密堆積起來(lái)組成SiC晶體。SiC存在許多具有不同堆積順序的穩(wěn)定晶體(晶體多型現(xiàn)象)。圖1顯示了由Si原子和C原子組成的基本結(jié)構(gòu)單元平鋪成平面,并以最緊密的方式堆積的情況。當(dāng)在每個(gè)平面結(jié)構(gòu)上堆積其他平面結(jié)構(gòu)時(shí),有兩種可能的堆積順序(可在A平面上的B點(diǎn)或C點(diǎn)堆積)。SiC存在多種可能的堆積順序,因此存在具有不同堆積結(jié)構(gòu)的晶體。并且堆積順序的不同導(dǎo)致的能量差異相對(duì)較小。
圖1:平面排列的Si-C基本結(jié)構(gòu)單元,以及在其上堆積結(jié)構(gòu)單元時(shí)的位置
代表性的SiC晶體多型有3C型、4H型和6H型等。這里的數(shù)字表示沿著堆積方向一周期內(nèi)的碳硅雙原子層數(shù),C代表立方晶系(cubic),H代表六方晶系(hexagonal)。SiC晶體制造過(guò)程中,由于溫度等條件的不同,決定所形成的多型體。4H型SiC的堆積順序如圖2所示,表1總結(jié)了各種多型體的堆積順序。
圖2:4H型SiC的堆積順序
表1:SiC各種多型體的堆積順序
SiC具有間接躍遷型能帶結(jié)構(gòu),并且不同多型體具有不同的禁帶寬度。例如,以4H型SiC為例,其禁帶寬度為3.26eV,是Si的大約3倍。順便說(shuō)一下,可見光的能量范圍是1.7eV~3.3eV,高純度的4H型SiC晶體對(duì)可見光是透明的。為什么用于器件制造的SiC晶體會(huì)呈現(xiàn)出黃色或綠色?高濃度n型摻雜SiC晶體在導(dǎo)帶中存在大量載流子(電子),由于能帶結(jié)構(gòu)的原因,它們會(huì)吸收特定能量的可見光。
半導(dǎo)體的禁帶寬度通常會(huì)隨著原子間距的減小而增大。例如,SiC的禁帶寬度大于Si(1.1eV),小于C(金剛石)(5.5eV)。此外,GaN的原子間距離(0.192nm)和SiC的原子間距離(0.189nm)相近,因此兩者的禁帶寬度也接近(GaN為3.4eV)。禁帶寬度大意味著電子激發(fā)從價(jià)帶到導(dǎo)帶所需的能量大,換言之,導(dǎo)致功率器件發(fā)生耐壓擊穿的電場(chǎng)更大。因此,與功率器件的主流材料Si相比,SiC具有耐高壓的特性,是功率器件的理想選擇。表2列出了SiC的各種多型體的禁帶寬度。
表2:SiC不同多型體的禁帶寬度
在現(xiàn)存的穩(wěn)定多型體中,用于電力轉(zhuǎn)換的功率器件通常采用4H型SiC,其擊穿電場(chǎng)強(qiáng)度大、各向異性小。目前市場(chǎng)上用于功率器件的SiC襯底幾乎全部采用n型導(dǎo)電的4H型結(jié)構(gòu),在偏離(0001)面4°制造器件。
在SiC晶體內(nèi)部,有時(shí)會(huì)存在局部Si-C層的堆積順序發(fā)生晶體缺陷(堆垛層錯(cuò))。當(dāng)堆積順序改變時(shí),導(dǎo)帶和價(jià)帶的能級(jí)也會(huì)發(fā)生變化。例如,在4H型SiC中,如果部分區(qū)域出現(xiàn)其他堆積順序,該區(qū)域的禁帶寬度將小于周圍區(qū)域,從而形成矩形勢(shì)阱(圖3)。當(dāng)雙極性電流通過(guò)時(shí),載流子(電子、空穴)會(huì)被捕獲,從而影響SiC器件的導(dǎo)電性(例如增加導(dǎo)通電阻等)。在制造器件時(shí),必須考慮到這一點(diǎn)。三菱電機(jī)通過(guò)各種測(cè)試和獨(dú)特的器件結(jié)構(gòu)設(shè)計(jì)來(lái)應(yīng)對(duì)這一問(wèn)題。
圖3:SiC的能帶結(jié)構(gòu)(左)、引入堆垛層錯(cuò)后的能帶結(jié)構(gòu)(右)
文章來(lái)源:艾邦半導(dǎo)體